Взял кредит на 14 месяцев

Статья на тему: "Взял кредит на 14 месяцев" написанная понятным языком. Поскольку каждый конкретный случай уникальный, то у вас могут возникнуть дополнительные вопросы. Их вы всегда можете задать дежурному специалисту.

Содержание

Решение задачи 17. Вариант 255

15 января планируется взять кредит в банке на 9 месяцев. Условия его возврата
таковы:
— 1‐го числа каждого месяца долг возрастает на 4 % по сравнению с концом
предыдущего месяца;
— со 2‐го по 14‐е число каждого месяца необходимо выплатить часть долга;
— 15‐го числа каждого месяца долг должен быть на одну и ту же величину меньше
долга на 15‐е число предыдущего месяца.
Известно, что в пятый месяц кредитования нужно выплатить 44 тыс. рублей.
Какую сумму нужно вернуть банку в течение всего срока кредитования?

Пусть ​ ( S ) ​ — сумма кредита

Постоянный платеж будет ​ ( frac ) ​

  1. В начале февраля был долг ​ ( S ) ​ и на него начислили проценты ​ ( rS ) ​, платеж будет ​ ( frac+rS ) ​
  2. В начале марта долг ​ ( S-frac=frac) ​. Платеж будет ​ ( frac+frac) ​
  3. В начале апреля долг будет ​ ( frac-frac=frac) ​…

и тд. Не трудно уловить закономерность.

В пятом месяце ​ ( frac ) ​ — наш долг.

Теперь нам осталось просто проссумировать все платежи

Источник: http://gdz-larin.ru/?p=3170

15 января планируется взять кредит в банке на 24 месяца. Условия его возврата таковы: — 1-го числа каждого месяца долг возрастает на 2% по сравнению с концом предыдущего месяца; — со 2-го по 14-е число каждого месяца необходимо выплатить часть долга; — 15-го числа каждого месяца долг должен быть на одну и туже величину меньше долга на 15-е число предыдущего месяца. Известно, что за первые 12 месяцев нужно выплатить банку 1370000 рублей. Какую сумму планируется взять в кредит?

Если видишь в условии задачи фразу «на одну и ту же», то это задача на дифференцированный платеж. О разнице аннуитетного и дифференцированного платежах можно посмотреть здесь на примерах двух задач.

Распишем, что дано.

S — сумма денег, взятая в кредит

m = 1 + 2/100 = 1,02 (полезный коэффициент; увеличитель суммы долга)

xn — ежемесячные выплаты

Если долг на одну и ту же величину меньше, то это говорит о том, что он уменьшается равномерно каждый месяц на S/24 (всю сумму кредита S разделили на 24 месяца).

Помимо этого мы знаем, что каждый месяц долг увеличивается на 2% (в m раз) и делается выплата.

Распишем, что будет происходить с долгом по месяцам (Нас будут интересовать только 1-й и 12 -й месяцы).

Помимо того, что я распишу изменение суммы долга, я сразу выражу выплаты, которые должны будут производиться.

Небольшой комментарий к предыдущей записи. Я не случайно расписала изменение долга за второй месяц. Именно он позволяет мне перепрыгнуть сразу к 12-ому месяцу. Как так получается? Номер второго месяца и числитель в первой дроби в сумме дают 25 (2 + 23), и такая сумма должна быть и в 3-ем, 4-ом, . 12-ом, . 24-ом месяцах. Если мой месяц идет под номером 12, то в числителе будет стоять число 13, т.к. 12 + 13 = 25.

Как мы уже знаем, долг уменьшается равномерно на одну и ту же сумму, т.е. уменьшается в арифметической прогрессии.

Выразим сумму выплат за первые 12 месяцев по формуле суммы первых n членов арифметической прогрессии. В оригинале формула выглядит так:

Адаптируя ее под нашу задачу, получим такую:

Источник: http://xn--80aaasqmjacq0cd6n.xn--p1ai/app/examples/view/Tekstovye-zadachi/Reshit-zadachu22/

Задание №19 из реального ЕГЭ по математике от 4 июня 2015

В новом формате ЕГЭ по математике задание значится как «Задание №17»

Разбор задания №19 одного из вариантов

15‐го января планируется взять кредит в банке на 14 месяцев. Условия его возврата таковы:
‐ 1‐го числа каждого месяца долг возрастает на % по сравнению с концом предыдущего месяца;
‐ со 2‐го по 14‐е число каждого месяца необходимо выплатить часть долга;
‐ 15‐ го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15 число предыдущего месяца.
Известно, что общая сумма выплат после полного погашения кредита на 15% больше суммы, взятой в кредит. Найдите .

Пусть в кредит взято рублей.

1-го числа следующего месяца (февраль) долг составит

Со 2-го по 14-е число должна быть произведена выплата в размере

после чего сумма долга составит

(При такой схеме долг на одну и ту же сумму меньше долга на 15 число предыдущего месяца).

1-го марта долг составит

Со 2-го по 14-е число должна быть произведена выплата в размере

после чего сумма долга составит

В итоге сумма выплат составит

Перепишем полученную сумму так:

Посколько известно, что общая сумма выплат после полного погашения кредита на 15% больше суммы, взятой в кредит, то составим уравнение:

Ответ: 2.

Чтобы не потерять страничку, вы можете сохранить ее у себя:

Источник: http://egemaximum.ru/zadanie-19-iz-realnogo-ege-po-matematike-ot-4-iyunya-2015/

ХЭЛП, ЕГЭ по математике

Дубликаты не найдены

Смотрим, как изменяется долг 15 числа каждого месяца. x — сумма кредита, р — ежемесячная выплата

D0 = x,
D1 = rx — p,
D2 = r^2 * x — rp — p.

По условию, D2 — D1 = D1 — D0, после подстановки получаем квадратное уравнение

r^2 — r (p/x + 2) + (p/x + 1) = 0

Из условия известно, что 14p = 1.15x, отсюда можно найти p/x. Остаётся только решить квадратное уравнение.

UPD. Уже после написания коммента подумал, что ежемсячные выплаты, в принципе, могут быть не одинаковыми, но в таком случае задача превращается в намного более громоздкую.

Источник: http://pikabu.ru/story/khyelp_egye_po_matematike_3408232

Взял кредит на 14 месяцев

15‐го января планируется взять кредит в банке на 14 месяцев. Условия его возврата таковы:

— 1-го числа каждого месяца долг возрастает на r% по сравнению с концом предыдущего месяца;

— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;

— 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15 число предыдущего месяца. Известно, что общая сумма выплат после полного погашения кредита на 15% больше суммы, взятой в кредит. Найдите r.

Пусть начальная сумма кредита равна S, тогда переплата за первый месяц равна По условию, ежемесячный долг перед банком должен уменьшиться равномерно. Этот долг состоит из двух частей: постоянной ежемесячной выплаты, равной S/14, и ежемесячной равномерно уменьшающейся выплаты процентов, равной

Используя формулу суммы членов арифметической прогрессии, найдём полную переплату по кредиту:

По условию общая сумма выплат на 15% больше суммы, взятой в кредит, тогда:

Читайте так же:  Как начисляется пенсия работающему пенсионеру после увольнения

Примечание Дмитрия Гущина.

Укажем общие формулы для решения задач этого типа. Пусть на n платежных периодов (дней, месяцев, лет) в кредит взята сумма S, причём каждый платежный период долг сначала возрастёт на r% по сравнению с концом предыдущего платежного периода, а затем вносится оплата так, что долг становится на одну и ту же сумму меньше долга на конец предыдущего платежного периода. Тогда величина переплаты П и полная величина выплат В за всё время выплаты кредита даются формулами

В условиях нашей задачи получаем: откуда для n = 14 находим r = 2.

Доказательство формул (для получения полного балла его нужно приводить на экзамене) немедленно следует из вышеприведённого решения задачи путём замены 14 месяцев на n месяцев и использовании формулы суммы n первых членов арифметической прогрессии.

Источник: http://ege.sdamgia.ru/problem?id=509980

Взял кредит на 14 месяцев

Задание 17. 15 января планируется взять кредит в банке на 19 месяцев. Условия его возврата таковы:

— 1-го числа каждого месяца долг возрастает на r % по сравнению с концом предыдущего месяца;

— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;

— 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца.

Известно, что общая сумма выплат после полного погашения кредита на 30% больше суммы, взятой в кредит. Найдите r.

Обозначим через сумму кредита, взятого в банке на 19 месяцев. Каждый месяц долг возрастает на %, следовательно, долг на второй месяц составит

После увеличения долга, следует выплата в размере рублей. Получаем размер долга на конец второго месяца:

и после упрощения получаем выражение

В следующий месяц сумма долга будет равна

с размером выплаты в

после чего сумма долга составит

Таким образом, сумма выплат через 19 месяцев составит

По условию задачи сумма выплат на 30% больше суммы взятой в кредит, т.е. составляет , то есть получаем равенство

Источник: http://self-edu.ru/ege2016_36.php?id=1_17

Взял кредит на 14 месяцев

15‐го января планируется взять кредит в банке на 14 месяцев. Условия его возврата таковы:

— 1-го числа каждого месяца долг возрастает на r% по сравнению с концом предыдущего месяца;

— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;

— 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15 число предыдущего месяца. Известно, что общая сумма выплат после полного погашения кредита на 15% больше суммы, взятой в кредит. Найдите r.

Пусть начальная сумма кредита равна S, тогда переплата за первый месяц равна По условию, ежемесячный долг перед банком должен уменьшиться равномерно. Этот долг состоит из двух частей: постоянной ежемесячной выплаты, равной S/14, и ежемесячной равномерно уменьшающейся выплаты процентов, равной

Используя формулу суммы членов арифметической прогрессии, найдём полную переплату по кредиту:

По условию общая сумма выплат на 15% больше суммы, взятой в кредит, тогда:

Примечание Дмитрия Гущина.

Укажем общие формулы для решения задач этого типа. Пусть на n платежных периодов (дней, месяцев, лет) в кредит взята сумма S, причём каждый платежный период долг сначала возрастёт на r% по сравнению с концом предыдущего платежного периода, а затем вносится оплата так, что долг становится на одну и ту же сумму меньше долга на конец предыдущего платежного периода. Тогда величина переплаты П и полная величина выплат В за всё время выплаты кредита даются формулами

В условиях нашей задачи получаем: откуда для n = 14 находим r = 2.

Доказательство формул (для получения полного балла его нужно приводить на экзамене) немедленно следует из вышеприведённого решения задачи путём замены 14 месяцев на n месяцев и использовании формулы суммы n первых членов арифметической прогрессии.

Источник: http://ege.sdamgia.ru/test?pid=509980

Экономическая задача на ЕГЭ 1 июня → №17 профильного ЕГЭ

а) Долг на 1-е число месяца без учета процентной ставки:
1. S.
2. S-50.
3. S-100.
.
20. S-19⋅50.
21. S-20⋅50.

б) Выплачено до 15-го числа месяца:
1. (50 + S cdot frac>).
2. (50 + left( right) cdot frac>).
3. (50 + left( right) cdot frac>).
.
20. (50 + left( right) cdot frac>).
21. (left( right) + left( right) cdot frac>).

в) Долг после 14-го числа месяца:
1. (S — 50).
2. (S — 100).
3. (S — 150).
.
20. (S — 20 cdot 50).
21. (0).

г) Складывая выплаты, получим:
(1000 + S — 1000 + frac>> — frac right)>>> = 2073.)
(121S = 207300 + 50 cdot frac> cdot 20 = 217800,;;S = 1800.)

Источник: http://4ege.ru/zadacha/56677-zadacha-17-profilnogo-ege-2018.html

Профильный ЕГЭ по математике. Задание № 17. Кредиты. Схема 2: известна информация об изменении суммы долга.

Задачи ЕГЭ №17 на кредиты обычно относятся к одному из двух характерных типов, которые легко различить между собой.

1 тип. Выплаты кредита производятся равными платежами. Эта схема еще называется «аннуитет»

2 тип. Выплаты кредита подбираются так, что сумма долга уменьшается равномерно. Это так называемая «схема с дифференцированными платежами».

К первому типу относятся также задачи, в которых есть информация о платежах.

Ко второму типу — задачи, в которых есть информация об изменении суммы долга.

В этой статье — решение задач на кредиты второго типа. Схема 2: с дифференцированными платежами. В условии есть информация об изменении суммы долга.

Если в условии задачи сказано, что сумма долга уменьшается равномерно, или что 15-го числа каждого месяца сумма долга на одну и ту же величину меньше суммы долга на 15-е число предыдущего месяца, или есть информация о том, как именно уменьшается сумма долга, — это задача на кредиты второго типа.

1. 15-го января планируется взять кредит в банке на 19 месяцев. Условия его возврата таковы:

— 1-го числа каждого месяца долг возрастёт на по сравнению с концом предыдущего месяца;

— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;

— 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца. Известно, что общая сумма выплат после полного погашения кредита на больше суммы, взятой в кредит. Найдите r.

Ключевая фраза в условии: «15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца». Другими словами, сумма долга уменьшается равномерно. Что это значит?

Если вначале сумма долга равна S, то через месяц (после начисления процентов и первой выплаты) она уменьшилась до .Еще через месяц будет ,затем — и так до нуля.

Нарисуем схему погашения кредита.

Первая строка в схеме — сумма долга после очередной выплаты.

Вторая строка — сумма долга после начисления процентов. Стрелками показано, как меняется сумма долга. Число платежных периодов n = 19.

Вот клиент берет в кредит сумму . После начисления процентов сумма долга увеличилась в раз и стала равна . После первой выплаты сумма долга уменьшилась на и стала равной . Банк снова начисляет проценты, и теперь сумма долга равна . Таким образом, первая выплата

Сумма всех выплат:

Мы сгруппировали слагаемые и вынесли общие множители за скобку. Видим, что и в первой, и во второй скобке — суммы арифметической прогрессии, у которой и

В первой скобке — сумма 19 слагаемых, во второй сумма 18 слагаемых.

Читайте так же:  Среднесрочное долговое обязательство

По формуле сумма арифметической прогрессии,

Получим, что общая сумма выплат , где — величина переплаты. Эта величина показывает, на сколько общая сумма выплат больше суммы, взятой в кредит.

Здесь — количество платежных периодов.

Обратите внимание. Общая сумма выплат:

, где — величина переплаты,

В следующих задачах мы будем (если это возможно) применять удобную формулу для переплаты без вывода. Однако на экзамене вам надо будет ее вывести. Иначе решение могут не засчитать.

2. 15-го января планируется взять кредит в банке на некоторое количество месяцев. Условия его возврата таковы:

— 1-го числа каждого месяца долг возрастает на по сравнению с концом предыдущего месяца;

— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;

— 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца.

На сколько месяцев можно взять кредит, если известно, что общая сумма выплат после полного погашения кредита на больше суммы, взятой в кредит.

По формуле для переплаты при выплате суммы кредита дифференцированными платежами имеем:

где — искомое число месяцев, а — величина платежной ставки в процентах. По условию, переплата равна , тогда:

3. 15-го января был выдан полугодовой кредит на развитие бизнеса. В таблице представлен график его погашения.

Дата 15,01 15,02 15,03 15,04 15,05 15,06 15,07
Долг (в процентах от кредита) 100% 90% 80% 70% 60% 50% 0%

В конце каждого месяца, начиная с января, текущий долг увеличивался на , а выплаты по погашению кредита происходили в первой половине каждого месяца, начиная с февраля. На сколько процентов общая сумма выплат при таких условиях больше суммы самого кредита?

В этой задаче (как и в большинстве задач ЕГЭ) мы не сможем применить формулу для величины переплаты. Ведь погашение кредита происходит неравномерно. Первые 5 месяцев долг ежемесячно уменьшается на своей величины, а в последний месяц сразу до нуля.

Запишем, чему равна каждая выплата, и найдем сумму всех выплат.

Общая сумма выплат

— переплаты, — общая сумма выплат, — сумма кредита.

4. В июле 2016 года планируется взять кредит в размере 6,6 млн. руб. Условия возврата таковы:

— каждый январь долг возрастает на по сравнению с концом предыдущего года.

— с февраля по июнь необходимо выплатить часть долга.

— в июле 2017, 2018 и 2019 годов долг остается равным 6,6 млн. руб.

— суммы выплат 2020 и 2021 годов равны.

Найдите r, если в 2021 году долг будет выплачен полностью и общие выплаты составят 12,6 млн. рублей.

— ежегодные выплаты 2020 и 2021 годов.

В 2018 году появились, пожалуй, самая сложная задачи ЕГЭ такого типа. Вот большая статья о том, что же все-таки было на ЕГЭ-2018:

Подведем итоги. Соберем всё, что узнали о решении задач на кредиты по второй схеме (с дифференцированными платежами) в небольшую таблицу:

Равномерное уменьшение суммы долга (схема с дифференцированными платежами). Применяется также, когда известно, как уменьшается сумма долга.
Пусть – сумма кредита, – количество платежных периодов,
– процент по кредиту, начисляемый банком. Коэффициент показывает, во сколько раз увеличивается сумма долга после начисления процентов.
Схема погашения кредита для платежных периодов.

– число платежных периодов.

Сумма всех выплат:

Применяем формулу суммы арифметической прогрессии. Общая сумма выплат:

Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России) +7 (495) 984-09-27 (бесплатный звонок по Москве)

Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.

Обучающее видео
БЕСПЛАТНО

Техническая поддержка:
[email protected] (круглосуточно)

Пробные репетиционные ЕГЭ: пройдите бесплатное тестирование! Все, как на настоящем ЕГЭ.
Звоните, чтобы записаться:

8 (495) 984-09-27 или 8 (800) 775-06-82

Для нормального функционирования и Вашего удобства, сайт использует файлы cookies. Это совершенно обычная практика.Продолжая использовать портал, Вы соглашаетесь с нашей Политикой конфиденциальности.

Все поля обязательны для заполнения

Премиум

Вся часть 2 на ЕГЭ по математике, от задачи 13 до задачи 19. То, о чем не рассказывают даже ваши репетиторы. Все приемы решения задач части 2. Оформление задач на экзамене. Десятки реальных задач ЕГЭ, от простых до самых сложных.

Видеокурс «Премиум» состоит из 7 курсов для освоения части 2 ЕГЭ по математике (задачи 13-19). Длительность каждого курса — от 3,5 до 4,5 часов.

  1. Уравнения (задача 13)
  2. Стереометрия (задача 14)
  3. Неравенства (задача 15)
  4. Геометрия (задача 16)
  5. Финансовая математика (задача 17)
  6. Параметры (задача 18)
  7. Нестандартная задача на числа и их свойства (задача 19).

Здесь то, чего нет в учебниках. Чего вам не расскажут в школе. Приемы, методы и секреты решения задач части 2.

Видео удалено.
Видео (кликните для воспроизведения).

Каждая тема разобрана с нуля. Десятки специально подобранных задач, каждая из которых помогает понять «подводные камни» и хитрости решения. Автор видеокурса Премиум — репетитор-профессионал Анна Малкова.

Получи пятерку

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля — до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Сразу после оплаты вы получите ссылки на скачивание видеокурсов и уникальные ключи к ним.

Задачи комплекта «Математические тренинги — 2019» непростые. В каждой – интересные хитрости, «подводные камни», полезные секреты.

Варианты составлены так, чтобы охватить все возможные сложные задачи, как первой, так и второй части ЕГЭ по математике.

Как пользоваться?

  1. Не надо сразу просматривать задачи (и решения) всех вариантов. Такое читерство вам только помешает. Берите по одному! Задачи решайте по однойи старайтесь довести до ответа.
  2. Если почти ничего не получилось – начинать надо не с решения вариантов, а с изучения математики. Вам помогут книга для подготовки к ЕГЭи Годовой Онлайн-курс.
  3. Если вы правильно решили из первого варианта Маттренингов 5-7 задач – значит, знаний не хватает. Смотри пункт 1: Книгаи Годовой Онлайн-курс!
  4. Обязательно разберите правильные решения. Посмотрите видеоразбор – в нем тоже много полезного.
  5. Можно решать самостоятельно или вместе с друзьями. Или всем классом. А потом смотреть видеоразбор варианта.
Читайте так же:  Для рефинансирования кредитов какие требуются документы

Стоимость комплекта «Математические тренинги – 2019» — всего 1100 рублей. За 5 вариантов с решениями и видеоразбором каждого.

Это пробная версия онлайн курса по профильной математике.

Вы получите доступ к 3 темам, которые помогут понять принцип обучения, работу платформы и оценить ведущую курса Анну Малкову.

— 3 темы курса (из 50).
— Текстовый учебник с видеопримерами.
— Мастер-класс Анны Малковой.
— Тренажер для отработки задач.

Регистрируйтесь, это бесплатно!

Нажимая на кнопку, вы даете согласие на обработку своих персональных данных

Источник: http://ege-study.ru/zadacha-17-profilnogo-ege-po-matematike-kredity-sxema-2-izvestna-informaciya-ob-izmenenii-summy-dolga/

Взял кредит на 14 месяцев

Задание 17. 15 января планируется взять кредит в банке на 49 месяцев. Условия его возврата таковы:

— 1-го числа каждого месяца долг возрастает на 1 % по сравнению с концом предыдущего месяца;

— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;

— 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца.

Какую сумму планируется взять в кредит, если общая сумма выплат после полного его погашения составит 2 млн рублей?

(Считайте, что округления при вычислении платежей не производятся.)

Обозначим через x размер кредита, взятого в банке. Во втором месяце долг увеличивается на 1% и, затем, осуществляется выплата так, чтобы долг уменьшался на одну и ту же величину, т.е. в первый раз выплата будет составлять , и сумма долга во втором месяце составит

Аналогично для следующего месяца, только долг теперь будет составлять , получаем остаток долга в размере

После 49 месяцев выплаты будут составлять сумму, равную

Перепишем это выражение в виде

По условию задания вся эта сумма равна 2 000 000 рублей. Получаем уравнение:

Источник: http://self-edu.ru/ege2020_36.php?id=2_17

Взял кредит на 14 месяцев

Задание 17. 15-го мая планируется взять кредит в банке на 17 месяцев. Условия его возврата таковы:

— 1-го числа каждого месяца долг возрастает на 2 % по сравнению с концом предыдущего месяца;

— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;

— 15-го числа каждого месяца с 1-го по 16-й долг должен быть на 50 тысяч рублей меньше долга на 15-е число предыдущего месяца;

— к 15-му числу 17-го месяца кредит должен быть полностью погашен.

Какую сумму планируется взять в кредит, если общая сумма выплат после полного его погашения составит 1472 тысячи рублей?

Обозначим через S исходную сумму кредита. В течение первого месяца эта сумма возрастает на 2%, становится равной S+0,02S. Выплату нужно сделать так, чтобы исходная сумма S уменьшилась на 50 тыс. рублей, то есть, нужно выплатить

0,02S+50 тыс. рублей.

Оставшаяся сумма S-50 в следующем месяце снова увеличивается на 2%, становится равной и следует выплатить

Таким образом, в течение 16-ти месяцев сумма выплат составит:

В последний 17-й месяц выплачивается остаток . В сумме имеем:

То есть, был взят кредит в 1200 тыс. рублей = 1 200 000 рублей.

Источник: http://self-edu.ru/ege2019_36.php?id=4_17

15-го января планируется взять кредит в банке на 14 месяцев. Условия его возврата таковы: -1-го…

Пусть сумма, взятая в кредит, = 14 частям.
ТОгда каждый месяц возвращаем 1 часть в виде основного долга + проценты, набежавшие за месяц.
Сумма, на которую накручиваются %, кадый месяц уменьшается на 1 часть.
То есть после 1 месяца возвращаем проценты с 14-ти частей, после 2-го месяца возвращаем % с 13 частей и т.д. После 14-го месяца возвращаем проценты только с 1 части
Проценты за 1-й месяц а1 = 14 * r/100;
Проценты за 2-й месяц а2= 13* r/100;
…….
Проценты за 14- месяц а14 = 1 * r/100.
Всего сумма уплаченных процентов — это арифм. прогрессия,
S14=(a1+a14)/2 * 14= (0,14 r + 0,01 r)/2 * 14 = 0,15r * 7 = 1,05 r.
По условию эта сумма равна 15% от суммы долга, то есть 14 * 15/100 = 2,1
Уравнение 1,05 r = 2,1;
r = 2.1 : 1,05 ;
r = 2%

Источник: http://matfaq.ru/question/15-go-yanvarya-planiruetsya-vzyat-kredit-v-banke-na-14-mesyatsev-usloviya-ego-vozvrata-takovy-1-go/

Взял кредит на 14 месяцев

15 января планируется взять кредит в банке на 16 месяцев. Условия его возврата таковы:

— 1-го числа каждого месяца долг возрастает на 2 % по сравнению с концом предыдущего месяца;

— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;

— 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца.

Какую сумму следует взять в кредит, чтобы общая сумма выплат после полного погашения равнялась 2,34 млн рублей?

Пусть сумма кредита равна S. По условия долг перед банком по состоянию на 15-е число должен уменьшаться до нуля равномерно:

Первого числа каждого месяца долг возрастает на 2%, значит, последовательность размеров долга по состоянию на 1-е число такова:

Таким образом, выплаты должны быть следующими:

Всего следует выплатить:

Тогда значит, сумма, взятая в кредит, равна 2 млн рублей.

Источник: http://math-ege.sdamgia.ru/test?pid=520193

Разбор задачи №17 («Банковская», или «Экономическая») на ЕГЭ по математике 2018 года.

В 2018 году на ЕГЭ по математике появились задачи, напугавшие многих выпускников. «Это страшно, — говорили они после экзамена. — Никогда такого не было. Решить невозможно».

Конечно же, я сочувствую абитуриентам, для которых ЕГЭ – все-таки большой стресс. Экзамен – это испытание не только знаний, но и хладнокровия, и способности действовать в сложной ситуации. И может быть, сказать себе: «Да, задача необычная, но я знаю общий подход к решению таких задач – справлюсь и на этот раз».

Действительно ли настолько страшны были «банковские» задачи на ЕГЭ по математике 2018 года? Они своеобразны. Их невозможно решить без подготовки, без знания того, как вообще устроены задачи ЕГЭ на кредиты.

Запомним: есть всего два характерных типа «банковских» задач, или задач на кредиты.

1 тип. Выплаты кредита производятся равными платежами . Эта схема еще называется «аннуитет». К первому типу относятся также все задачи, где известны платежи (или дана закономерность именно для платежей ).

2 тип. Выплаты кредита подбираются так, что сумма долга уменьшается равномерно . Это так называемая «схема с дифференцированными платежами». Ко второму типу относятся также задачи, где известна закономерность уменьшения суммы долга .

О двух схемах решения задач на кредиты – мой краткий теоретический материал.

Более подробно я рассказываю теорию и решаю такие задачи на своих мастер-классах и интенсивах. Чтобы узнать о них, подпишись на нашу рассылку.

Посмотрим с этой точки зрения на «банковские» задачи ЕГЭ-2018.

15-го декабря планируется взять кредит в банке на 21 месяц. Условия возврата таковы:
— 1-го числа каждого месяца долг возрастает на 3% по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца с 1-го по 20-й долг должен быть на 30 тысяч рублей меньше долга на 15-е число предыдущего месяца;
— к 15-му числу 21-го месяца кредит должен быть полностью погашен.
Какую сумму планируется взять в кредит, если общая сумма выплат после полного его погашения составит 1604 тысяч рублей?

Прежде всего, введем переменные. Расчеты будем вести в тысячах рублей.

Пусть S – сумма, которую планируется взять в кредит,

Z – общая сумма выплат, Z = 1604 (тыс. рублей).

Х — ежемесячное уменьшение суммы долга, Х = 30 (тысяч рублей),

p=3% — процент, начисляемый банком ежемесячно. После первого начисления процентов сумма долга равна После каждого начисления процентов сумма долга увеличивается в раза. В нашей задаче k = 1,03.

Читайте так же:  Как выплачиваются алименты на троих детей

Определим, к какому типу относится задача. Долг уменьшается равномерно (по условию, 15-го числа каждого месяца с 1-го по 20-й долг должен быть на 30 тысяч рублей меньше долга на 15-е число предыдущего месяца). Значит, это задача второго типа. А в задачах второго типа мы рисуем следующую схему:

После первого начисления процентов сумма долга равна kS. Затем, после первой выплаты, сумма долга равна S – X, где Х = 30 (тысяч рублей).

Значит, первая выплата равна kS – (S – X) (смотри схему).

Вторая выплата: k (S – X ) – ( S – 2X).

Последняя выплата: k ( S – 20 X).

Найдем общую сумму выплат Z.
Z = kS – (S – X) + k (S – X ) – ( S – 2X) + … + k ( S – 20X) =
= k ( S + S – X + S – 2X + … + S – 20 X) – ( S – X + S – 2X + … + S – 20X).

Мы сгруппировали слагаемые, содержащие множитель k, и те, в которых нет k.

Упростим выражения в скобках:
k (21S – X (1 + 2 + 3+ … + 20)) – (20S – X (1 + 2 + 3+ … + 20)) = Z.

В задачах этого типа (когда сумма долга уменьшается равномерно) применяется формула для суммы арифметической прогрессии:

В этой задаче мы тоже ее используем.

k (21 S – 210X ) – 20 S + 210 k = S (21k – 20) – 210 X (k-1) = Z.

Осталось подставить числовые значения.

S ( 21⋅ 1,03 – 20) – 210 ⋅ 30 ⋅ 0,03 = 1604.

Отсюда S = 1100 тысяч рублей = 1 100 000 рублей.

Следующая задача относится к тому же типу. Математическая модель та же самая. Только найти нужно другую величину – процент, начисляемый банком. К тому же количество месяцев, на которое взят кредит, неизвестно.

15-го декабря планируется взять кредит в банке на 1 000 000 рублей на (n+1) месяц. Условия его возврата таковы:
—1-го числа каждого месяца долг возрастает на r % по сравнению с концом предыдущего месяца;
— cо 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца с 1-го по n-й долг должен быть на 40 тысяч рублей меньше долга на 15-е число предыдущего месяца;
— 15-го числа n-го месяца долг составит 200 тысяч рублей;
— к 15-му числу (n + 1)-го месяца кредит должен быть полностью погашен.
Найдите r, если известно, что общая сумма выплат после полного погашения кредита составит 1378 тысяч рублей.

Как всегда, введем обозначения. Для удобства ведем расчеты в тысячах рублей.

S = 1000000 рублей = 1000 (тыс. рублей) – сумма кредита,

Х = 40 (тыс. рублей) – ежемесячное уменьшение суммы долга,

Z = 1378 (тыс. рублей) – общая сумма выплат,

— коэффициент, показывающий, во сколько раз увеличилась сумма долга после начисления процентов.

Рисуем уже знакомую схему погашения кредита.

Первая выплата: kS – (S – X).

Вторая выплата: k (S – X ) – ( S – 2X).

Последняя выплата: k ( S – n X).

По условию, 15-го числа n-го месяца долг составит 200 тысяч рублей.

Значит, S – nX = 200. Подставим числовые данные:

1000 – 40 n = 200; тогда n = 20, n + 1 = 21, то есть кредит был взят на 21 месяц. Очень удобно – количество месяцев в этой задаче оказалось таким же, как в предыдущей. Поэтому очень кратко повторим основные моменты решения

Общая сумма выплат Z:

Z = kS – (S – X) + k (S – X ) – ( S – 2X) + … + k ( S – X) =
= k ( S + S – X + S – 2X + … + S – 20 X) – ( S – X + S – 2X + … + S – 20X) =
= k (21S – X (1 + 2 + 3+ … + 20)) – (20S – X (1 + 2 + 3+ … + 20)) =
= k (21 S – 210X ) – 20 S + 210 k = S (21k – 20) – 210 X (k-1).

Мы снова использовали ту же формулу для суммы арифметической прогрессии:

По условию, Z = 1378 (тыс. рублей).

Выразим k из формулы S (21k – 20) – 210 X (k-1) = Z:

Подставим данные из условия задачи.

Третья задача из числа «кошмаров» ЕГЭ-2018 по математике. Та же схема!

3.

15-го декабря планируется взять кредит в банке на сумму 300 тысяч рублей на 21 месяц. Условия возврата таковы:
— 1-го числа каждого месяца долг возрастает на 2% по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца с 1-го по 20-й долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца;
— 15-го числа 20-го месяца долг составит 100 тысяч рублей;
— к 15-му числу 21-го месяца кредит должен быть полностью погашен.
Найдите общую сумму выплат после полного погашения кредита.

Тоже задача второго типа – есть информация об уменьшении суммы долга. Точно также будем вести расчеты в тысячах рублей.

Как всегда, введем обозначения. Для удобства ведем расчеты в тысячах рублей.

S = 300 (тыс. рублей) – сумма кредита,

n = 21 – количество месяцев,

Х – ежемесячное уменьшение суммы долга,

Z – общая сумма выплат.

Рисуем ту же схему, что и в предыдущей задаче. По условию, 15-го числа 20-го месяца долг составит 100 тысяч рублей.

Значит, S – 20 X = 100. Подставив данные из условия, найдем, что Х = 10.

Точно так же считаем сумму выплат (смотри задачи 1 и 2).

Z = S (21k – 20) – 210 X (k-1).

Подставляем данные из условия: Z = 300 (21 ⋅ 1,02 – 20) – 210 ⋅ 10 ⋅ 0,02 = 384 (тыс. рублей).

Ответ: 384000 рублей.

Хочешь узнать решения всех сложных задач ЕГЭ? Подпишись на нашу рассылку.

Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России) +7 (495) 984-09-27 (бесплатный звонок по Москве)

Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.

Источник: http://ege-study.ru/ru/ege/podgotovka/matematika/razbor-zadachi-17-bankovskaya-ili-ekonomicheskaya-na-ege-po-matematike-2018-goda/

Решение экономических задач на кредиты

Ответ: 5 месяцев.

Задача 2.
31 декабря 2014 года Дмитрий взял в банке 4 290 000 рублей в кредит под 14,5 годовых. Схема выплаты кредита следующая – 31 декабря следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 14,5%), затем Дмитрий переводит в банк х рублей. Какой должна быть сумма х, чтобы Дмитрий выплатил долг двумя равными платежами (то есть за два года)?
Решение:
Дмитрий взял в банке кредит 4 290 000 рублей.

При решении задач на кредиты с дифференцированным платежом начисляемые проценты за весь период кредитования можно вычислить с помощью формулы суммы n-первых членов арифметической прогрессии. И потом найти сумму общего платежа. Считаю, что этот метод будет прост и понятен для учащихся.

Задача 3
15 января планируется взять кредит в банке на сумму 2,4 млн. рублей на 24 месяца. Условия его возврата таковы:
– 1-го числа каждого месяца долг возрастает на 3% по сравнению с концом предыдущего месяца;
– со 2-го по 14 число каждого месяца необходимо выплатить часть долга;
– 15-го числа каждого месяца долг должен быть на одну величину меньше долга на 15-е число предыдущего месяца.
Какую сумму надо выплатить банку за первые 12 месяцев?
Решение:
Платёж за месяц состоит из величины ежемесячного долга (он равен 2400000_24=100000(р.)) и начисленных к остатку процентов. В каждый месяц долг уменьшается 100000р.
Сумма начисленных «процентов» за 12 месяцев (в млн. р.):

Читайте так же:  Отпуск ребенок инвалид

За 12 месяцев буде выплачена половина долга, то есть 1,2 млн р.
Значит за первые 12 месяцев банку нужно выплатить 1 200 000 + 666 000 = 1 866 000 р.
Ответ: 1 866 000 рублей.

Задача 4
15 января планируется взять кредит в банке на 5 месяцев. Условия его возврата таковы:
– 1-го числа каждого месяца долг возрастает на 1 % по сравнению с концом предыдущего месяца;
– со 2-го по 14 число каждого месяца необходимо выплатить часть долга;
– 15-го числа каждого месяца долг должен быть на одну величину меньше долга на 15-е число предыдущего месяца.
Сколько процентов от суммы кредита составляет общая сумма денег, которую нужно выплатить банку за весь срок кредитования?
Решение:
Пусть в банке взяли кредит S рублей. Платёж за месяц состоит из величины ежемесячного долга (он равен

Всего банку будет выплачено S + 0,03S = 1,03S. Значит общая сумма выплаченных денег от суммы кредита составляет 103%.
Ответ: 103%.

Задача 5
15 января планируется взять кредит в банке на сумму 2,4 млн рублей на 24 месяца. Условия его возврата таковы:
– 1-го числа каждого месяца долг возрастает на 2 % по сравнению с концом предыдущего месяца;
– со 2-го по 14 число каждого месяца необходимо выплатить часть долга;
– 15-го числа каждого месяца долг должен быть на одну величину меньше долга на 15-е число предыдущего месяца.
Какую сумму нужно выплатить банку за последние 12 месяцев?
Решение:
Платёж за месяц состоит из величины ежемесячного долга (он равен 2400000_24=100000(р.)) и начисленных к остатку процентов. В каждый месяц долг уменьшается 100000р.
Сумма начисленных процентов за 12 последних месяцев (в млн):

За 12 месяцев буде выплачена половина долга, то есть 1,2 млн р.
Значит за последние 12 месяцев банку нужно выплатить 1 200 000 + 156 000 = 1 356 000 р.
Ответ: 1 356 000 рублей.

Задача 6
15 января планируется взять кредит в банке на 15 месяцев. Условия его возврата таковы:
– 1-го числа каждого месяца долг возрастает на 3 % по сравнению с концом предыдущего месяца;
– со 2-го по 14 число каждого месяца необходимо выплатить часть долга;
– 15-го числа каждого месяца долг должен быть на одну величину меньше долга на 15-е число предыдущего месяца.
Известно, что восьмая выплата составила 99,2 тыс. рублей. Какую сумму нужно вернуть банку в течение всего срока кредитования?
Решение:
Пусть взяли кредит S рублей.
Платёж за месяц состоит из величины ежемесячного долга (он равен

Значит за весь срок кредитования будет выплачено 1 488 000 рублей.
Ответ: 1 488 000 рублей.

Задача 7
15 января планируется взять кредит в банке на 9 месяцев. Условия его возврата таковы:
– 1-го числа каждого месяца долг возрастает на r% по сравнению с концом предыдущего месяца;
– со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
– 15-го числа каждого месяца долг должен быть на одну и ту же величину меньше долга на 15-е число предыдущего месяца.
Известно, что общая сумма денег, которую нужно выплатить банку за весь срок кредитования, на 15% больше, чем сумма взятая в кредит. Найдите r.
Решение:
Пусть взяли кредит S рублей.
Платёж за месяц состоит из величины ежемесячного долга (он равен

Значит кредит взят под 3% в месяц.
Ответ: 3%.

Задача 8
15 января планируется взять кредит в банке на 15 месяцев. Условия его возврата таковы:
– 1-го числа каждого месяца долг возрастает на 1 % по сравнению с концом предыдущего месяца;
– со 2-го по 14 число каждого месяца необходимо выплатить часть долга;
– 15-го числа каждого месяца долг должен быть на одну величину меньше долга на 15-е число предыдущего месяца.
Известно, что восьмая выплата составила 108 тыс. рублей. Какую сумму нужно вернуть банку в течение всего срока кредитования?
Решение:
Пусть взяли кредит S рублей.
Платёж за месяц состоит из величины ежемесячного долга (он равен

В (1) подставим (2), получим: 1,08 ∙1 500 000 = 1620000
Значит за весь срок кредитования будет выплачено 1 620 000 рублей.
Ответ: 1 620 000 рублей.

Задача 9
15 января планируется взять кредит в банке на 18 месяцев. Условия его возврата таковы:
– 1-го числа каждого месяца долг возрастает на 2 % по сравнению с концом предыдущего месяца;
– со 2-го по 14 число каждого месяца необходимо выплатить часть долга;
– 15-го числа каждого месяца долг должен быть на одну величину меньше долга на 15-е число предыдущего месяца.
Сколько процентов от суммы кредита составляет общая сумма денег, которую нужно выплатить банку за весь период кредитования?
Решение:
Пусть взяли кредит S рублей.
Платёж за месяц состоит из величины ежемесячного долга (он равен

Значит сумма выплаченных банку денег составляет 119% от суммы долга.
Ответ: 119%.

Задача 10
15 января планируется взять кредит в банке на 24 месяца. Условия его возврата таковы:
– 1-го числа каждого месяца долг возрастает на 1 % по сравнению с концом предыдущего месяца;
– со 2-го по 14 число каждого месяца необходимо выплатить часть долга;
– 15-го числа каждого месяца долг должен быть на одну величину меньше долга на 15-е число предыдущего месяца.
Известно, что за первые 12 месяцев нужно выплатить банку 177,75 тыс. рублей. Какую сумму планируется взять в кредит?
Решение:
Пусть взяли кредит S рублей.
Платёж за месяц состоит из величины ежемесячного долга (он равен

Получим уравнение: 0,5925 S = 177750,
S = 300000
Значит в кредит взяли 300 000 рублей.
Ответ: 300 000 рублей.

Задача 11
15 января планируется взять кредит в банке на 25 месяцев. Условия его возврата таковы:
– 1-го числа каждого месяца долг возрастает на r % по сравнению с концом предыдущего месяца;
– со 2-го по 14 число каждого месяца необходимо выплатить часть долга;
– 15-го числа каждого месяца долг должен быть на одну величину меньше долга на 15-е число предыдущего месяца.
Известно, что я сумма денег, которую нужно выплатить банку за весь срок кредитования, на 39% больше, чем сумма, взятая в кредит. Найдите r.
Решение:
Пусть взяли кредит S рублей.
Платёж за месяц состоит из величины ежемесячного долга (он равен

Значит кредит взят под 3% в месяц.
Ответ: 3%.

Задача 12
15 января планируется взять кредит в банке на 24 месяцев. Условия его возврата таковы:
– 1-го числа каждого месяца долг возрастает на 1 % по сравнению с концом предыдущего месяца;
– со 2-го по 14 число каждого месяца необходимо выплатить часть долга;
– 15-го числа каждого месяца долг должен быть на одну величину меньше долга на 15-е число предыдущего месяца.
Известно, что за последние 12 месяцев нужно выплатить банку 1597,5 тысяч рублей. Какую сумму планируется взять в кредит?
Решение:
Пусть взяли кредит S рублей.
Платёж за месяц состоит из величины ежемесячного долга (он равен

Получим уравнение: 0,5325 S = 1597500; S = 3 00 000.
Значит планируется взять 3 000 000 рублей.
Ответ: 3 000 000 рублей.

Литература
И.В.Ященко. Математика. Профильный уровень. Типовые тестовые задания. Издательство «Экзамен», М. 2017.

Видео удалено.
Видео (кликните для воспроизведения).

Источник: http://ped-kopilka.ru/blogs/blog58271/reshenie-yekonomicheskih-zadach-na-kredity.html

Взял кредит на 14 месяцев
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here