Устройство параллельной работы

Статья на тему: "Устройство параллельной работы" написанная понятным языком. Поскольку каждый конкретный случай уникальный, то у вас могут возникнуть дополнительные вопросы. Их вы всегда можете задать дежурному специалисту.

Параллельная работа трансформаторов

Параллельная работа трансформаторов – подключение трансформаторов на совместную работу, при таком подключении соединяются между собой одноименные выводы обмоток со стороны высокого напряжения и выводы обмотки сторон низкого напряжения.

Соединение только первичных, или только вторичных обмоток между собой не следует смешивать с параллельной работой трансформаторов. Такое соединение определяется, как совместная работа двух трансформаторов.

При необходимости включения трансформаторов на параллельную работу во избежание негативных последствий для оборудования необходимо учитывать несколько факторов. Рассмотрим подробно условия включения силовых трансформаторов на параллельную работу.

Равенство групп соединения обмоток

Существует несколько групп соединений обмоток трансформатора. Каждая группа отличается своим углом сдвига фаз первичного и вторичного напряжений. Поэтому если включить два трансформатора с разными группами соединения обмоток на параллельную работу, то это приведет к возникновению больших уравнительных токов в обмотках, которые приведут к выходу из строя трансформаторы.

Поэтому первым условием включения трансформаторов на параллельную работу является равенство их групп соединений обмоток.

Номинальная мощность трансформаторов

Второе условие, необходимое для возможности включения трансформаторов на параллельную работу – соотношение их номинальной мощности не более 1 к 3. Например, если номинальная мощность одного силового трансформатора 1000 кВА, то он может быть включен на параллельную работу с другим трансформатором, мощностью от 400 кВА до 2500 кВА – все величины из данного диапазона мощности в соотношении с мощностью 1000 кВА не более 1 к 3.

Параллельная работа трансформаторов с различной номинальной мощностью:

Номинальное напряжение обмоток, коэффициент трансформации

Третье условие – равенство номинальных напряжений обмоток подключаемых на совместную работу трансформаторов. Если напряжение на вторичных обмотках трансформаторов будет отличаться, то это приведет к возникновению уравнительных токов, которые в свою очередь приводят к падениям напряжения и нежелательным потерям.

Допускается незначительное отклонение напряжений — разница коэффициентов трансформации в пределах до 0,5%.

На трансформаторах, где предусмотрена возможность регулировки коэффициента трансформации путем увеличения или уменьшения количества витков обмотки, нужно учитывать положение переключающих устройств – ПБВ или РПН. При необходимости посредством применения данных устройств можно откорректировать напряжение на трансформаторе до требуемых значений, после чего можно соединять вторичные обмотки – включать трансформаторы на параллельную работу.

Напряжение короткого замыкания

На каждом трансформаторе в паспорте указывается такой параметр, как напряжение короткого замыкания. Эта величина показывает процентное соотношение к номинальному напряжению первичной обмотки силового трансформатора, которое необходимо подать на первичную обмотку, чтобы по обмотке протекал номинальный ток, при замкнутых накоротко выводах вторичной обмотки.

Напряжение короткого замыкания характеризует внутреннее сопротивление обмоток силового трансформатора. Поэтому если включить параллельно трансформаторы с разными показателями напряжения короткого замыкания, то внутренние сопротивления трансформаторов будут непропорциональны и при подключении нагрузки трансформаторы будут нагружены неравномерно: один из трансформаторов может быть перегружен, а другой недогружен.

В данном случае нагрузка будет распределяться обратно пропорционально напряжению короткого замыкания – то есть трансформатор с меньшим значением напряжения КЗ будет перегружен.

Поэтому четвертым условием включения трансформаторов на параллельную работу является равенство напряжений короткого замыкания. Допускается разница напряжений короткого замыкания на 10%.

Распределение нагрузки между трансформаторами разной мощности

При необходимости включения трансформаторов на параллельную работу возникает вопрос: а как будет распределена нагрузка между трансформаторами разной номинальной мощности? При соблюдении вышеперечисленных условий нагрузка на трансформаторах будет распределена пропорционально, в соответствии с их номинальными мощностями.

Но, не смотря на соответствие паспортных данных вышеприведенным условиям, фактические параметры включаемых на параллельную работу трансформаторов могут немного отличаться.

В первую очередь это связано с техническим состоянием трансформатора, возможными несоответствиями, допущенными на производстве либо внесенными изменениями в конструкцию при выполнении ремонтно-восстановительных работ. В таком случае при включении трансформаторов на параллельную работу может наблюдаться непропорциональное распределение нагрузки.

Возможный вариант решения данной проблемы — изменение коэффициента трансформации переключением устройства ПБВ или РПН. В данном случае необходимо экспериментально откорректировать напряжение на вторичной обмотке трансформаторов таким образом, чтобы на обмотке недогруженного трансформатора напряжение было выше, чем на другом трансформаторе.

После выбора трансформаторов с учетом вышеприведенным условий необходимо выполнить еще одно важное условие – соблюсти фазировку при подключении выводов вторичных обмоток во избежание создания аварийной ситуации в электросети – междуфазного короткого замыкания.

То есть перед тем как соединить выводы вторичных обмоток необходимо убедиться в том, что будут подключены одноименные выводы – для этого выполняется пофазная проверка специальными указателями для фазировки.

При включении трансформаторов на параллельную работу не менее важно правильно выбрать оборудование для их подключения к электрической сети.

Выбор коммутационных аппаратов и соединительных токопроводов по стороне ВН и НН трансформаторов осуществляется по номинальному току обмоток трансформатора с учетом допустимых кратковременных перегрузок.

Защитные аппараты – высоковольтные выключатели, автоматически выключатели или предохранители должны быть выбраны таким образом, чтобы обмотки не подвергались перегрузкам выше допустимых значений, были защищены от возможных коротких замыканий в электрической сети.

Источник: http://electricalschool.info/main/ekspluat/481-parallelnaja-rabota-transformatorov.html

Все условия параллельной работы трансформаторов

Подключение нескольких трансформаторов на параллельную работу обусловлено требованием решения существенных проблем связанных с электроснабжением потребителей, это:

  1. Повышение нагрузки в сети, превышающей мощность основного трансформатора.
  2. Безопасная эксплуатация трансформаторов, так как вероятность отказа сразу 2 тр-ров чрезвычайно мала.
  3. Недостаток наличия расчетного места (в основном это габаритные размеры по высоте) для одного мощного трансформатора.
  4. Использование трансформаторов в соответствии со стандартными габаритными размерами на территории электроустановки.

При выполнении условий работы трансформаторов, подключенных параллельно, величина полной мощности должна быть равна суммируемым величинам мощностей. В этом случае должно соблюдаться условие равенства величин сопротивлений в сети и коэффициента трансформации. В случае несоблюдения равенства величин мощности происходит разделение нагрузки соответственно номиналам, но при этом коэффициенты трансформации должны быть одинаковыми.

Рекомендация: В случае разницы мощностей трансформаторов более чем в 2 раза режим работы, подключенных в параллель трансформаторов, не должен быть постоянным.

Условия включения трансформаторов на параллельную работу

Параллельная работа подразумевает обязательные и, несомненно, важные условия параллельной работы трансформаторов, всего существует 5 условий.

Читайте так же:  Трудовые споры нормативные акты

Соблюдая условия включения трансформаторов на параллельную работу, достигается надежность и безопасность работы электроустановки.

Источник: http://enargys.ru/vse-usloviya-parallelnoy-rabotyi-transformatorov/

Параллельная работа генераторов

На электрических станциях всегда устанавливают несколько турбо- или гидроагрегатов, которые работают совместно в параллельном соединении на общие шины генераторного или повышенного напряжения.

В результате этого выработка электроэнергии на электростанциях производится несколькими параллельно работающими генераторами и такая совместная их работа имеет много ценных преимуществ.

Параллельная работа генераторов:

1. повышает гибкость эксплуатации оборудования электростанций и подстанций, облегчает проведение планово-предупредительных ремонтов генераторов, основного оборудования и соответствующих РУ при минимуме необходимого резерва.

2. повышает экономичность работы электростанции, так как дает возможность распределять наиболее рационально суточный график нагрузки между агрегатами, чем достигается наилучшее использование мощности и повышается к. п. д.; на ГЭС дает возможность наиболее полно использовать мощность водяного потока в период паводков и летней и зимней межени;

3. повышает надежность и бесперебойность работы электростанций и электроснабжения потребителей.

Рис. 1. Принципиальная схема параллельной работы генераторов

Для увеличения производства и улучшения распределения электроэнергии многие электростанции объединяются для параллельной работы в мощные энергетические системы.

В нормальном режиме эксплуатации генераторы присоединены на общие шины (генераторного или повышенного напряжения) и вращаются синхронно. Их роторы вращаются с одинаковой угловой электрической скоростью

При параллельной работе мгновенные значения напряжений на выводах обоих генераторов должны быть равны по величине и обратны по знаку.

Для подключения генератора на параллельную работу с другим генератором (или с сетью) нужно произвести его синхронизацию, т. е. отрегулировать скорость вращения и возбуждение подключаемого генератора в соответствии с работающим.

Генераторы, работающий и включаемый на параллельную работу, должны быть сфазированы, т. е. иметь одинаковый порядок чередования фаз.

Как видно из рис. 1, при параллельной работе генераторы по отношению друг к другу включены навстречу, т. е. их напряжения U1 и U2 на выключателе будут прямо противоположны. По отношению же к нагрузке генераторы работают согласно, т. е. их напряжения U1 и U2 совпадают. Эти условия параллельной работы генераторов отражены на диаграммах рис. 2.

Рис. 2. Условия включения генераторов на параллельную работу. Напряжения генераторов равны по величине и противоположны по фазе.

Существуют два метода синхронизации генераторов: точная синхронизация и грубая синхронизация, или самосинхронизация.

Условия точной синхронизации генераторов.

При точной синхронизации возбужденный генератор подключают к сети (шинам) выключателем В (рис. 1) при достижении условий синхронизма — равенства мгновенных значений их напряжений U1 = U2

При раздельной работе генераторов их мгновенные фазные напряжения будут соответственно равны:

Отсюда вытекают условия, необходимые для параллельного включения генераторов. Для включаемого и работающего генераторов требуется:

1. равенство действующих значений напряжений U1 = U2

2. равенство угловых частот ω1 = ω2 или f1 = f2

3. совпадение напряжений по фазе ψ1 = ψ2 или Θ= ψ1 -ψ2 =0.

Точное выполнение этих требований создает идеальные условия, которые характеризуются тем, что в момент включения генератора уравнительный ток статора будет равен нулю. Однако следует отметить, что выполнение условий точной синхронизации требует тщательной подгонки сравниваемых величин напряжения частоты и фазных углов напряжения генераторов.

В связи с этим на практике невозможно полностью выполнить идеальные условия синхронизации; они выполняются приближенно, с некоторыми небольшими отклонениями. При невыполнении одного из указанных выше условий, когда U2, на выводах разомкнутого выключателя связи В будет действовать разность напряжений:

Рис. 3. Векторные диаграммы для случаев отклонения от условий точной синхронизации: а — Действующие напряжения генераторов не равны; б — угловые частоты не равны.

При включении выключателя под действием этой разности потенциалов в цепи потечет уравнительный ток, периодическая составляющая которого в начальный момент будет

Рассмотрим два случая отклонения от условий точной синхронизации, показанные на диаграмме (рис. 3):

1. действующие напряжения генераторов U1 и U2 не равны, остальные условия соблюдаются;

2. генераторы имеют одинаковые напряжения, но вращаются с разными скоростями, т. е. их угловые частоты ω1 и ω2 не равны, и имеет место несовпадение напряжений по фазе.

Как видно из диаграммы на рис. 3, а, неравенство действующих значений напряжений U1 и U2 обусловливает возникновение уравнительного тока I”ур, который будет почти чисто индуктивным, так как активные сопротивления генераторов и соединительных проводников сети весьма малы и ими пренебрегают. Этот ток не создает толчков активной мощности, а, следовательно, и механических напряжений в деталях генератора и турбины. В связи с этим при включении генераторов на параллельную работу разность напряжений может быть допущена до 5—10%, а в аварийных случаях — до 20%.

При равенстве действующих значений напряжений U1 = U2, но при расхождении угловых частот Δω=ω1 – ω2 ≠ 0 или Δf=f1 – f2 ≠ 0 происходит смещение векторов напряжений генераторов и сети (или 2-го генератора) на некоторый угол Θ, меняющийся во времени. Напряжения генераторов U1 и U2 в рассматриваемом случае будут отличаться по фазе не на угол 180°, а на угол 180°—Θ (рис. 3, б).

На выводах разомкнутого выключателя В, между точками а и б, будет действовать разность напряжений ΔU. Как и в предыдущем случае, наличие напряжения может быть установлено при помощи электрической лампочки, а действующую величину этого напряжения можно измерить вольтметром, включенным между точками а и б.

Если замкнуть выключатель В, то под действием разности напряжений ΔU возникает уравнительный ток I”ур, который в отношении U2 будет почти чисто активным и при включении генераторов на параллельную работу вызовет сотрясения и механические напряжения в валах и других деталях генератора и турбины.

При ω1 ≠ ω2 синхронизация получается вполне удовлетворительной, если скольжение s0

Читайте так же:  Трудовые споры арбитражный суд

Вследствие инерционности регуляторов турбины нельзя осуществить длительное равенство угловых частот ω1 = ω2, и угол Θ между векторами напряжений, характеризующий относительное положение обмоток статора и ротора генераторов, не остается постоянным, а непрерывно меняется; его мгновенное значение будет Θ=Δωt.

На векторной диаграмме (рис. 4) последнее обстоятельство выразится в том, что с изменением угла сдвига фаз в между векторами напряжений U1 и U2 будет также изменяться ΔU. Разность напряжений при этом ΔU называется напряжением биений.

Рис. 4. Векторная диаграмма синхронизации генераторов при неравенстве частот.

Мгновенное значение напряжений биений Δu представляет собой разность мгновенных значений напряжений u1 и u2 генераторов (рис. 5).

Предположим, что достигнуто равенство действующих значений U1=U2, фазные углы начала отсчета времени ψ1 и ψ2 тоже равны.

Тогда можно написать

Кривая изменения напряжения биений показана на рис.5.

Напряжение биений гармонически изменяется с частотой, равной полусумме сравниваемых частот, и с амплитудой, изменяющейся во времени в зависимости от угла сдвига фаз Θ:

Из векторной диаграммы рис. 4 для некоторого определенного значения угла Θ можно найти действующее значение напряжения биений:

Рис. 5. Кривые напряжения биений.

Учитывая изменение угла Θ с течением времени, можно написать выражение для огибающей по амплитудам напряжения биений, которое дает изменение амплитуд напряжения во времени (пунктирная кривая на рис. 5, б):

Как видно из векторной диаграммы на рис. 4 и последнего уравнения, амплитуда напряжения биений ΔU изменяется от 0 до 2Um. Наибольшая величина ΔU будет в тот момент, когда векторы напряжения U1 и U2 (рис. 4) совпадут по фазе и угол Θ = π, а наименьшая — когда эти напряжения будут отличаться по фазе на 180° и угол Θ = 0. Период кривой биений равен

При включении генератора на параллельную работу с мощной системой значение хс системы мало и им можно пренебречь (хс ≈ 0), тогда уравнительный ток

В случае неблагоприятного включения в момент Θ = π ударный ток в обмотке статора включаемого генератора может достигнуть двойного значения ударного тока трехфазного короткого замыкания на выводах генератора.

Активная составляющая уравнительного тока, как видно из векторной диаграммы на рис. 4, равна

Видео удалено.
Видео (кликните для воспроизведения).

Источник: http://electricalschool.info/spravochnik/maschiny/1159-parallelnaja-rabota-generatorov.html

Параллельная работа генераторов

Судовые электрические станции, как правило, состоят из нескольких генераторов. Схема судовой электростанции может предусматривать как раздельную, так и параллельную работу этих генераторов.

Параллельная работа генераторов характеризуется включением всех генераторов на общие шины ГРЩ, от которых получают питание все потребители.

Включение генераторов переменного тока на параллельную работу требует обеспечить:

  • — равенство ЭДС включаемого генератора и напряжение цепи
  • — равенство частот включаемого генератора и цепи
  • — совпадение фаз ЭДС включаемого генератора и напряжение цепи.

Так как указанные условия должны выполняться для всех трёх фаз, то необходимо, чтобы генераторы были присоединены один к другому одноимёнными фазами, т.е. должен соблюдаться одинаковый порядок чередования фаз. Эти условия выполняются при монтаже электростанции.

На панели 2 для этой цели имеется синхроноскоп с интегрированным синхронизирующим блокировочным реле. Прибор выдаёт команду на параллельную работу только в том случае, если установленные ранее параметры выполнены.

Процесс включения генераторов на параллельную работу называется синхронизацией и может выполнятся вручную, полуавтоматически и автоматически. На УПС «Седов» применяется автоматическая синхронизация. Функции автоматической системы заключаются в контролировании отключений параметров, сравниваемых при точной синхронизации, подгонке параметров до значений, при которых допустима синхронизация, выдаче управляющего сигнала на аппаратуру включения генератора.

Распределение активных нагрузок. При параллельной работе изменять величину активной нагрузки дизель-генератора можно регулированием подачи топлива в дизель. При этом изменяется вращающий момент дизеля и активная составляющая электрической нагрузки генератора (P=UICos?).

Распределение реактивных нагрузок. Разность электродвижущих сил параллельно включённых синхронных генераторов вызывает реактивный уравнительный ток. Уравнительные токи между генераторами можно устранить изменением токов возбуждения (ЭДС) генераторов.

Питание с берега и порядок выключения.

Ввод для питания с берега выполнен для трёхфазного тока 3 ? 50 Гц 220 В; 350 А

На панели 3 находятся необходимые приборы для контроля и коммутации.

Перед включением на обесточенную шинную систему необходимо проверить фазировку. При неправильном направлении вращения магнитного поля необходимо произвести замену фаз путём переключения на другие клеммы.

Питание с берега:

  • — Питание с берега имеется (через трансформаторы 380/220 в румпельном отделении).
  • — Сигнальная лампа Н1 горит
  • — Включите переключатель вольтметра и замерьте на измерительном приборе наличие трёх фаз
  • — Проверьте на указателе порядка чередования фаз, имеете ли вы правое вращающее магнитное поле (проверяется синхроноскопом).

Источник: http://studwood.ru/1766922/tehnika/parallelnaya_rabota_generatorov

Устройство параллельной работы

Регулирование напряжения может производиться по астатической и статической характеристикам (см. рис. 1.3).

Астатическую характеристику имеют АРВ, измерительные органы которых включены только на напряжение генератора. Такие АРВ обеспечивают постоянство напряжения на шинах генератора, но при параллельной работе на общие шины двух и более генераторов возникает неопределенность в распределении между генераторами реактивной мощности. Статические характеристики имеют АРВ, измерительные органы которых включены не только на напряжение, но и на ток генератора.

В этом случае (рис.7.23) если, например, два генератора работают параллельно на общие шины и имеют одинаковые характеристики, то при исходном напряжении оба будут загружены одинаковой реактивной мощностью, пропорциональной току ротора Если теперь напряжение понизится и станет равным , то оба генератора увеличат загрузку реактивной мощностью до значения, пропорционального , и будут поддерживать новый уровень напряжения.

В случае неодинаковых характеристик АРВ параллельно работающих генераторов каждый из них также будет загружен вполне определенной реактивной мощностью.

Существуют различные способы создания статизма по реактивному току (мощности) генератора. Так, если измерительный орган АРВ включен на одно из междуфазных напряжений, например (рис. 7.24), то для введения статизма, т.е. зависимости от реактивного тока генератора, последовательно в цепь напряжения включается резистор , к которому подводится ток от трансформатора тока фазы А. При стом направление тока дожно быть таким, чтобы падение напряжения от тока в резисторе совпадало по фазе с напряжением выполнении этого условия напряжение, подводимое к АРВ, будет равно

Читайте так же:  Сколько нужно платить алиментов если не работаешь

где — реактивная составляющая тока

Из приведенного выражения видно, что при увеличении тока напряжение, подводимое к АРВ, увеличивается. Это воспринимается измерительным органом как повышение напряжения, и АРВ действует в сторону его понижения. Таким образом, обеспечивается зависимость регулируемого напряжения от реактивного тока генератора, т.е. работа по статической характеристике.

В случае, если к измерительному органу АРВ подводится трехфазное напряжение, как, например, у регулятора, приведенного на рис. 7.19, статизм характеристики также создается подачей в цепь измерительного органа напряжения, пропорционального реактивной составляющей тока статора генератора. Для этого падение напряжения от вторичного тока статора генератора на резисторах подается через промежуточный трансформатор TL в цепь нелинейного элемента измерительного органа.

Рис. 7.23. Распределение реактивной мощности между параллельно включенными генераторами при регулировании возбуждения по статическим характеристикам

Рис. 7.24. Способ создания статизма при регулировании напряжения

Результирующее напряжение на первичной обмотке трансформатора ТМ, являющейся нелинейным элементом, составит

где — напряжение от трансформатора напряжения генератора; — напряжение на вторичной обмотке трансформатора TL, пропорциональное падению напряжения от реактивного тока на резисторе .

Для создания статизма по реактивной составляющей тока статора генератора направление вектора падения напряжения должно быть таким, чтобы при чисто реактивной нагрузке генератора оно совпадало с направлением вектора Это достигается соответствующим подбором группы соединения обмоток TV, ТА и TL и необходимым сочетанием фаз тока и напряжения.

При работе генератора в блоке с трансформатором или автотрансформатором к АРВ обычно подводится напряжение от трансформатора напряжения генератора. Поэтому при астатической характеристике АРВ он поддерживает постоянным напряжение на выводах генератора. При необходимости обеспечить постоянство напряжения на шинах электростанции применяется компенсация реактивного сопротивления трансформатора. Для случая, когда АРВ включается на одно междуфазное напряжение, компенсация выполняется также по схеме на рис. 7.24, но ток от трансформатора тока подается с обратной полярностью.

При параллельной работе энергоблоков генератор — трансформатор на общие шины высшего напряжения с индивидуальными АРВ, имеющими астатические характеристики, реактивная нагрузка электростанции распределяется между генераторами обратно пропорционально реактивным сопротивлениям трансформаторов.

Если параллельно работают одинаковые энергоблоки, то реактивная нагрузка распределится между ними поровну. Таким образом, при параллельной работе энергоблоков на общие шины высшего напряжения дополнительных средств стабилизации не требуется.

Источник: http://scask.ru/h_book_aes.php?id=55

Параллельная работа синхронной машины сетью

Особенности работы генератора на сеть большой мощности. Обычно электростанции имеют несколько синхронных генераторов для параллельной работы на общую сеть. Это увеличивает общую мощность электростанции (при ограниченной мощности каждого из установленных на ней генераторов), повышает надежность энергоснабжения потребителей и позволяет лучше организовать обслуживание агрегатов. Электрические станции, в свою очередь, объединяют для параллельной работы в мощные энергосистемы, позволяющие наилучшим образом решать задачу производства и распределения электрической энергии. Таким образом, для синхронной машины, установленной на электрической станции, типичным является режим работы на сеть большой мощности, по сравнению с которой мощность рассматриваемого генератора является очень малой. В этом случае сбольшой степенью точности можно принять, что генератор работает параллельно с сетью бесконечно большой мощности, т.е. что напряжение сети U с и ее частота f с являются постоянными, не зависящими от нагрузки данного генератора.

Рассмотрим условия включения генератора на параллельную работу с сетью и способы регулирования нагрузки.

Включение генератора на параллельную работу с сетью. При этом необходимо обеспечить возможно меньший бросок тока в момент присоединения генератора к сети. В противном случае возможны срабатывание защиты, поломка генератора или первичного двигателя.

Ток в момент подключения генератора к сети будет равен нулю, если удастся обеспечить равенство мгновенных значений напряжений сети u с и генератора и:

На практике осуществление (1.29) сводится к выполнению трех равенств:

их начальных фаз бс = бг (совпадение по фазе векторов Щ c и Щ ).

Кроме того, для трехфазных генераторов нужно согласовать порядок чередования фаз.

Совокупность операций, требуемых для подключения генератора к сети, называют синхронизацией.Практически при синхронизации генератора сначала устанавливают номинальную частоту вращения ротора, что обеспечивает приближенное равенство частот f с ? f г , а затем, регулируя ток возбуждения, добиваются равенства напряжений U с= U. Совпадение по фазе векторов напряжений сети и генератора (бс = бг ) контролируется специальными приборами — ламповыми и стрелочными синхроноскопами.

Ламповые синхроноскопы применяют для синхронизации генераторов малой мощности и обычно используют в лабораторной практике. Этот прибор представляет собой три лампочки, включенные между фазами генератора и сети (рис. 1.31, а). На каждую лампу действует напряжение Дu = u си, которое при fc ? f г изменяется с частотой Дf = f сf г , называемой частотой биений (рис. 1.31, б). В этом случае лампы будут мигать. При f с ? f г разность Ди будет изменяться медленно, вследствие чего лампы будут постепенно загораться и погасать. Обычно генератор подключают к сети в момент, когда разность напряжений Ди на короткое время становится близкой нулю, т.е. в середине периода погасания ламп; в этом случае выполняется условие совпадения по фазе векторов Щ с и Щ. Для более точного определения этого момента часто применяют нулевой вольтметр, имеющий растянутую шкалу в области нуля. После включения генератора в сеть дальнейшая синхронизация частоты вращения ротора, т.е. поддержание условия n 2 = n 1 , происходит автоматически.

Генераторы большой мощности синхронизируют с помощью стрелочных синхроноскопов, работающих по принципу вращающегося магнитного поля. В этом приборе при f c ? f г стрелка вращается с частотой, пропорциональной разности частот f cf г в одну или другую сторону в зависимости от того, какая из этих частот больше. При f c = f г она устанавливается на нуль; в этот момент и следует подключать генератор к сети. На электрических станциях обычно используют автоматические приборы для синхронизации генераторов без участия обслуживающего персонала.

Часто также применяют метод самосинхронизации, при котором генератор подключается к сети при отсутствии возбуждения (обмотка возбуждения замыкается на активное сопротивление). При самосинхронизации ротор разгоняется до частоты вращения, близкой к синхронной (допускается скольжение s до 2%), за счет вращающего момента первичного двигателя и асинхронного момента, обусловленного индуктированием тока в успокоительной обмотке и замкнутой обмотке возбуждения. После этого в обмотку возбуждения подается постоянный ток, что приводит к втягиванию ротора в синхронизм. При методе самосинхронизации в момент включения генератора возникает сравнительно большой толчок тока, который не должен превышать 3,5Iа ном .

Читайте так же:  Привлечь за неуплату алиментов

Рис. 1.31-Схема подключения синхронного генератора к сетис помощью лампового синхроноскопа (а) и кривые изменения напряжений ис ии перед включением (б) генератора

Регулирование активной мощности . После включения генератора в сеть его напряжение Uстановится равным напряжению сети U c. По отношению к внешней нагрузке напряжения U и U ссовпадают по фазе, а по контуру «генератор — сеть» находятся в противо-фазе, т.е. Щ = — Щ c (рис. 1.32, а ). Так как перед включением в сеть генератор работал вхолостую, то при выполнении указанных ранее трех условий, необходимых для синхронизации генератора, его ток Iа после подключения к сети также будет равен нулю. Рассмотрим, какими способами можно регулировать ток Iа при работе генератора параллельно с сетью на примере неявно-полюсной машины.

Ток, проходящий по обмотке якоря неявнополюсного генератора, можно определить из уравнения (1.19в):

Так как Щ =Щ c= const, то величину тока Эа можно изменять только двумя способами: изменяя э.д. с. Л по величине или по фазе.

Если к валу генератора приложить внешний момент, больший момента, необходимого для компенсации потерь мощности в стали и механических потерь, то ротор приобретает ускорение, вследствие чего вектор Л смещается относительно вектора Щ на некоторый угол и в сторону вращения векторов (рис. 1.32, б). При этом возникает разность векторов Л Щ, приводящая согласно (1.30) к появлению тока Эа. Вектор этого тока опережает на 90° вектор — аx сн и сдвинут относительно вектора Щна некоторый угол ц, меньший 90°. При работе в рассматриваемом режиме генератор отдает в сеть активную мощность P = mUIa cosц и на вал его действует электромагнитный тормозной момент, который уравновешивает вращающий момент первичного двигателя, вследствие чего частота вращения ротора остается неизменной. Чем больший внешний момент приложен к валу генератора, тем больше будет угол и, а следовательно, ток и мощность, отдаваемые генератором в сеть.

Рис. 1.32-Упрощенные векторные диаграммы неявнополюсной синхронной машиныпри параллельной работе с сетью в режимах: а — холостого хода; б-генераторном; в-двигательном

Если к валу ротора приложить внешний тормозной момент, то вектор Л будет отставать от вектора напряжения Щ на угол и (рис. 1.32, в ). При этом возникает ток Iа , вектор которого опережает на 90° вектор — ах сн и сдвинут на некоторый угол ц относительно вектора напряжения Щ. Так как угол ц>90°, активная составляющая тока находится в противофазе с напряжением Щ машины. Следовательно, в рассматриваемом режиме активная мощность Р= тЩЭа соsц забирается из сети и машина работает двигателем, создавая электромагнитный вращающий момент, который уравновешивает внешний тормозной момент; частота вращения ротора при этом снова остается неизменной.

Таким образом, для увеличения нагрузки генератора необходимо увеличивать приложенный к его валу внешний момент (т.е. вращающий момент первичного двигателя), а для уменьшения нагрузки — уменьшать этот момент. При изменении направления внешнего момента (если вал ротора не вращать, а тормозить) машина автоматически переходит из генераторного режима в двигательный.

Регулирование реактивной мощности. Если в машине, подключенной к сети и работающей в режиме холостого хода (рис. 1.33, а ), увеличить ток возбуждения I в , то возрастет э. д. с. Е (рис. 1.33, б) и по обмотке якоря будет проходить ток Iа , величина которого согласно (1.30) определяется только индуктивным сопротивлением х сн машины. Следовательно, ток Э a будет реактивным: он отстает по фазе от напряжения Щ на угол 90 е или опережает на тот же угол напряжение сети Щ с .

Рис. 1.33-Упрощенные векторные диаграммы неявнополюсной синхронной машиныпри параллельной работе с сетью, отсутствии активной нагрузкии изменении э. д. с. Е путем регулирования тока возбуждения: а — при E = Uс ; б — при Е > Uс ; в-при E

Источник: http://studwood.ru/1804018/tovarovedenie/parallelnaya_rabota_sinhronnoy_mashiny_setyu

5 условий параллельной работы трансформаторов, особенности и схема

Некоторые особенности эксплуатации электрических сетей и установок требуют возможность включения нескольких устройств преобразования электроэнергии. При соблюдении условий параллельной работы силовых трансформаторов улучшаются большинство показателей электроснабжения, в том числе перегрузочная способность и надежность.

Включение по данной схеме требует проведения дополнительных работ, направленных на недопущение неправильных подключений и возникновение недопустимых режимов и аварийных ситуаций.

В каких случаях нужен параллельный режим работы трансформаторов

Включение нескольких устройств преобразования электрической энергии преследует несколько целей:

  1. Повышение мощности преобразования.
  2. Увеличение надежности.
  3. Увеличение перегрузочной способности.
  4. Более рациональное использование свободного места.
  5. Снижение потерь при работе в периоды малой нагрузки.

Увеличение мощности потребителей требует соответственного увеличения мощности трансформатора. Цель параллельного включения – возможность не выполнять демонтаж и замену более слабого оборудования. В данном случае применяют дополнительную установку параллельно подключенного трансформатора. В первом приближении можно считать, что допустимая мощность потребителей в таком случае удваивается.

Отдельная категория потребителей отличается высокими требования к надежности электропитания. В таком случае назначение дублирующих трансформаторов – возможность обеспечения питанием в случае выхода части преобразователей из строя.

Параллельное включение трансформаторов применяют также в том случае, когда установка одного более мощной конструкции не соответствует требованиям по габаритам. Часто проще установить несколько малогабаритных конструкций вместо одно более мощной.

Снижение потерь на преобразование в период минимального потребления достигается путем отключения части трансформаторов.

Особенности и схема работы параллельного соединения

Не следует путать совместную и параллельную работу силовых трансформаторов. В первом случае устройства подключены параллельно в питающую сеть, но работают на разные потребители или на одни, но в разное время путем установки переключателя. Таким образом, происходит распределение нагрузки между преобразователями электроэнергии.

Читайте так же:  Судебная практика алименты в твердой денежной сумме

Параллельная работа трансформирующих устройств требует выполнения нескольких условий. При не соблюдении хотя бы одного из них, по обмоткам трансформаторов начинает протекать уравнительный ток, который снижает допустимую мощность нагрузки, вызывает перегруз преобразователя и снижает общий КПД.

Условия включения и работы по ПУЭ

В нормативно-технической документации, в частности Правилах устройства электроустановок (ПУЭ) оговорены все допустимые условия проектирования, установки и эксплуатации трансформаторного оборудования.

Условия параллельной работы дополнительно сформулированы в Правилах технической эксплуатации электроустановок потребителей (ПТЭЭП). В частности, здесь сформулированы основные требования подключения:

  • соответствие групп соединения обмоток;
  • допустимое соотношение мощностей трансформаторов;
  • допустимые нормы отклонения коэффициентов трансформации;
  • нормы напряжения короткого замыкания;
  • фазировка.

Фазировка

Одно из важнейших требований к параллельному включению трансформаторов – выполнение фазировки обмоток.

Соблюдать правильность чередования фаз необходимо потому, что в противном случае произойдет короткое замыкание между обмотками трансформаторов. При смещении фаз в проводниках величина напряжения в каждый момент времени различна, поэтому между ними возникает электрический ток.

Особенно важна процедура фазировки в случаях использования устройств с разными группами включения обмоток.

Напряжение на обмотках

Параллельная работа допускается только в случае равенства напряжений на высокой и низкой сторонах. Данное требование вызвано тем, что при неодинаковых значениях напряжения через обмотки начнут протекать уравнительные токи.

В устройствах с возможностью регулировки коэффициента трансформации необходимо учитывать положение переключающих устройств. Допускается коррекция выходных значений до необходимых значений с учетом того, чтобы не возникло перегрузки одного из трансформаторов.

Напряжение короткого замыкания

Трансформаторы должны иметь равное напряжение короткого замыкания, что обусловлено сопротивлением обмоток. Устройства с низким напряжением короткого замыкания имеют более низкоомную обмотку, а, как известно из схемы параллельного включения цепей, величина тока обратно пропорциональна сопротивлению участка. В противном случае возможна ситуация, когда трансформатор с более низким значением напряжения короткого замыкания будет работать в более нагруженном режиме.

Разница в данном параметре не должна превышать 10%.

Соответствующие друг другу обмотки

Обмотки устройств должны иметь одинаковую группу соединений, поскольку при сдвиге фаз, между обмотками начнут протекать уравнительные токи и тем большие, чем выше величина сдвига фазы, вплоть до короткого замыкания при сдвиге фаз 180 гр.

Перед включением необходимо проверить соответствие группы включения и фазировку каждой обмотки.

Мощность

Несколько меньшие требования предъявляются к трансформаторам в отношении их мощности. В соответствии с требованиями ПТЭЭП соотношение мощностей не должно превышать 1:3.

Подключение устройств с разной мощностью приводит к тому, нагрузка между установками будет распределена неравномерно и менее мощное устройство будет работать с перегрузкой.

Как выполнить фазировку

Фазировку выполняют, в основном, для вторичных цепей. В зависимости от состояния нейтрали, измерения производят по двум методикам.

Заземленная нейтраль

  1. В сеть подключаются цепи первичных обмоток. Нейтраль заземляется.
  2. Измеряют напряжение относительно вывода а1 первого трансформатора и выводами а2, в2, с2 второго;
  3. Повторяют те же действия для выводов в1 и с1.

Изолированная нейтраль

  1. Подключаются первичные обмотки;
  2. Подключают перемычку между выводами а1 и а2;
  3. Измеряют напряжение в12, с12;
  4. Переставляют перемычку на выводы в1 и в2;
  5. Измеряют напряжение а12, с12;
  6. Повторяют действия, переставив перемычку на выводя с1 и с2.

При обоих способах измерений соединению подлежат выводы, между которыми отсутствует напряжение.

Для измерения используются такие приборы:

  • Для цепей 0.4 кВ и ниже – вольтметры;
  • От 0.4 до 10 кВ – указатели напряжения;
  • Свыше 10 кВ – трансформаторы напряжения.

Устройства для измерения должны быть рассчитаны на удвоенное линейное напряжение.

Как выполнить подключение

Подключение трансформаторов в параллельную работы допускается только при соблюдении всех перечисленных условий. Допускается возможность работы устройств с различными группами включения обмоток:

  • в группах с разницей 4 часа (120 гр.) производится круговая перестановка обмоток;
  • группы с разницей 6 часов (180 гр.), например 0, 4, 8 и 6, 10, 2, подключаются после смены мест начала и конца обмотки одного из трансформаторов;
  • в нечетных группах меняются местами две фазы на обмотках высокого и низкого напряжений.

Во всех случаях выполняют повторную фазировку обмоток.

Включение в параллельную работу устройств с четной и нечетной группы невозможно.

Все работы по установке и коммутации выполняются при отсутствии высокого напряжения.

Последствия невыполнения условий

Невыполнение перечисленных условий приводит к следующим последствиям:

  1. Несоблюдение фазы вызывает прохождение тока через первичную обмотку даже при отсутствии нагрузки в результате сдвига фаз между проводами. В наихудшем варианте, при сдвиге фаз 180 гр., ток будет равен току короткого замыкания.
  2. Неравенство коэффициента трансформации. Ток будет протекать от устройства с высоким напряжением. Также увеличится холостой ход, который будет тем выше, чем больше разница в коэффициенте трансформации. Допустимая разница коэффициентов трансформации составляет не более 0.5%.
  3. Неравенство напряжения короткого замыкания не вызывает роста тока холостого хода, но при подключении нагрузки трансформатор с меньшим сопротивлением обмотки будет работать с перегрузкой. Допускается разница напряжения короткого замыкания не более 10%.
  4. Аналогичная ситуация возникает при использовании устройств с большой разницей номинальной мощности. Мощность одного из устройств не должна превышать более, чем в 3 раза мощность другого.

Достоинства и недостатки

Среди достоинств рассматриваемого типа включения следует отметить следующие:

  • увеличение допустимой мощности потребителей;
  • возможность горячего резервирования питания особо требовательных групп потребителей;
  • улучшение условий охлаждения устройств;
  • возможность оперативного регулирования количества подключенных устройств в условиях значительного изменения мощности потребителей.

При проектировании питающих установок нужно учитывать, что параллельные схемы включения не лишены недостатков:

  • усложнение за счет установки коммутирующих и соединительных устройств;
  • необходимость установки однотипных устройств;
  • увеличение габаритов помещения;
  • сложность подключения.
Видео удалено.
Видео (кликните для воспроизведения).

Источник: http://otransformatore.ru/vopros-otvet/usloviya-parallelnoj-raboty-transformatorov/

Устройство параллельной работы
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here